3次元極座標でのラプラシアン

http://homepage3.nifty.com/iromono/PhysTips/Lap.html
円柱座標を経由し,2次元極座標の場合を用いて計算すると,少しは楽.

  • 座標変換 (x,\,y,\,z)\to(r,\,\theta,\,\phi)

x=r\sin\theta\cos\phi,\;y=r\sin\theta\sin\phi,\;z=r\cos\theta と定める.
\rho=r\sin\theta とおき,座標変換(x,\,y,\,z)\to(\rho,\,\phi,\,z)\to(r,\,\theta,\,\phi) を考える.

x=\rho\cos\phi,\;y=\rho\sin\phi より,
dx=\cos\phi d\rho-\rho\sin\phi d\phi,\; dy=\sin\phi d\rho+\rho\cos\phi d\phi,
\partial_x=\cos\phi\partial_\rho-\frac{\sin\phi}{\rho}\partial_\phi,\; \partial_y=\sin\phi\partial_\rho+\frac{\cos\phi}{\rho}\partial_\phi.
ゆえに,{\partial_x}^2+{\partial_y}^2 ={\partial_\rho}^2+\frac{1}{\rho}\partial_\rho +\frac{1}{\rho^2}{\partial_\phi}^2.
(x,\,y)\to(\rho,\,\phi)z によらないので,\partial_z の意味は変わらない.
よって,\Delta={\partial_x}^2+{\partial_y}^2+{\partial_z}^2 ={\partial_\rho}^2+\frac{1}{\rho}\partial_\rho +\frac{1}{\rho^2}{\partial_\phi}^2+{\partial_z}^2.

z=r\cos\theta,\;\rho=r\sin\theta より,
\partial_\rho =\sin\theta\partial_r+\frac{\cos\theta}{r}\partial_\theta =\rho(\frac{1}{r}\partial_r+\frac{1}{r^2\tan\theta}\partial_\theta),
{\partial_z}^2+{\partial_\rho}^2 ={\partial_r}^2+\frac{1}{r}\partial_r +\frac{1}{r^2}{\partial_\theta}^2.
(z,\,\rho)\to(r,\,\theta)\phi によらないので,\partial_\phi の意味は変わらない.
よって,\Delta={\partial_r}^2+\frac{2}{r}\partial_r +\frac{1}{r^2}{\partial_\theta}^2 +\frac{1}{r^2\tan\theta}\partial_\theta +\frac{1}{(r\sin\theta)^2}{\partial_\phi}^2.

  • Hodge star を用いれば次のように計算できる.

dr,\,rd\theta,\,r\sin\theta d\phi は余接空間の正規直交基底ゆえ,
\Delta=\star d\star d
=\frac{1}{r^2\sin\theta}(\partial_r(r^2\sin\theta\partial_r) +\partial_\theta (\frac{r\sin\theta}{r}\partial_\theta) +\partial_\phi (\frac{r}{r\sin\theta}\partial_\phi))
=\frac{1}{r^2}\partial_r(r^2\partial_r) +\frac{1}{r^2\sin\theta}\partial_\theta (\sin\theta\partial_\theta) +\frac{1}{(r\sin\theta)^2}{\partial_\phi}^2.